
KOBE – How It Works: DNS Fundamentals EN

Note: The following is the output resulting from transcribing an audio file into a word/text document. Although
the transcription is largely accurate, in some cases may be incomplete or inaccurate due to inaudible passages
and grammatical corrections. It is posted as an aid to the original audio file, but should not be treated as an
authoritative record.

KOBE – How It Works: DNS Fundamentals
Saturday, March 09, 2019 – 08:45 to 10:15 JST
ICANN64 | Kobe, Japan

CATHY PETERSEN: Good morning, everyone! Welcome to How It Works, DNS

Fundamentals. This session will be presented by Matt Larson, our

Vice President from the office of the CTO. Thanks.

MATT LARSON: Thank you, Cathy. Good morning, everyone. So, these slides are a

brief introduction to, just as the title of the session says, how DNS

works. So, let’s get right into it.

 Let me tell you a little bit about the motivation for DNS in the first

place. IP addresses are easy for machines but hard for people. It’s

possible to remember IPv4 addresses. I know everybody knows

what those look like. There’s an example. It’s essentially

impossible for a normal human to remember IPv6 addresses, so

IPv6 makes it even more important to have a way for humans to

use names to refer to machines and other resources on the

Internet, but the underlying devices need IP addresses and that’s

what DNS does for us.

 So, in the early days of the Internet, when it came to naming

devices, that was completely different than it was today. This was

KOBE – How It Works: DNS Fundamentals EN

Page 2 of 38

before domain names. There were no domain names. Names

were simple. They’re what we would now call single-label names.

So, no dots in the name. The maximum length was 24 characters.

And these were called host names.

 The way it worked when a device, a computer, something,

needed to translate a name into an IP address, that is what we

call name resolution. And this was done in an extremely simple

way using something called a host file. There was literally a file –

and it was literally a plain text file that you could look at, human

readable, you could edit it in a text editor and this was called

host.text, and it has the same function but a slightly different

format than what you would now know as the /etc/ host file on

Unix or Linux.

 This file literally had a line with the name and IP address of every

device on the Internet at the time, and of course the Internet was

much, much smaller so it was conceivable that you could have a

file that had the name and address of every device on the

Internet.

 This file was centrally maintained by an organization called the

NIC, the Network Information Center. They had a US government

contract to do this. Network administrators from around the

Internet, when they had a change that they needed to the file –

namely, when they added a machine or removed a machine or

KOBE – How It Works: DNS Fundamentals EN

Page 3 of 38

changed the machine’s name or IP address – they would send an

e-mail to the NIC and say, “Hey, you need to make this change to

the host file because I just made this change on my network.”

 Then, once a week, NIC released a new version of the file and

people could use FTP, the file transfer protocol, to come in and

grab a new version of the file whenever they felt that theirs might

be out of date. So, this is an extremely manual, extremely low-

tech solution to the update mechanism.

 There were obvious problems to this, which you can imagine if

you just think about it for a moment. The first of these was

naming contention. So, the edits to this file were made by hand.

There was no good way to prevent duplicates. There was no

database in the backend. Nowadays, if you’re going to do

something like this, you’d have a database and if you needed a

text version of the file, you’d have some program that would run

that would extract the database and emit a text file. Well, that

wasn’t how it worked then. They were literally editing this file in

a text editor and there was no good method to prevent

duplicates.

 And because we’re talking about 24 characters, that’s a limited,

what we call a name space, for everyone to get along with on the

entire Internet. You had to name your machines on your network

KOBE – How It Works: DNS Fundamentals EN

Page 4 of 38

in the same 24-character name space as everybody else on the

Internet. So, duplicates began to be a problem.

 Synchronization was also a problem. Nobody ever had the same

version of this file. As the Internet grew and the file grew, you were

never up to date. It was like printed phone books, right? We don’t

have printed phone books that much anymore, but when we did,

the instant you got one it was already out of date because there

were already people whose numbers that had changed.

 Finally, the traffic in load, just to move this file around began to

be significant. It took a significant portion of the bandwidth of the

Internet at the time simply to move this monstrous growing file

around. Clearly this just didn’t make sense. Essentially

maintained host file with the name and IP of every device on the

Internet, it just didn’t scale. It didn’t make sense anymore.

 So, discussion started in the Internet engineer community in the

early 1980s on a replacement. There were a couple of goals. One

was to address the scaling issues I’ve just talked about and

another one was to simplify email routing and I’m going to talk a

little bit about this later, so I’m going to hold off on that.

 But until DNS, your e-mail address was tightly coupled to the

physical machine that you read your e-mail on and DNS provides

a level of indirection and lets you have an e-mail address that is

KOBE – How It Works: DNS Fundamentals EN

Page 5 of 38

independent of the physical machine where your mail is. Again,

I’ll talk about that coming up in a moment.

 But the result of this discussion is we now know is the domain

name system. That was the replacement for host.text.

 This is my one slide, super high-level summary of the domain

name system. Fundamentally, DNS is a distributed database, and

in this distributed database, the data is distributed over at the

entire world. It’s the largest distributed database there is. It’s

been a fantastic success. It’s scaled far, far beyond what it’s

creators I think could ever have imagined.

 In this database, data is maintained locally, so everyone

maintains their own named address mapping information. You

maintain that yourself locally. But it’s available globally. Anybody

all over the Internet can look up the data that you’re responsible

for and you can look up data that other people are responsible

for.

 DNS file is the client server model and clients are called resolvers.

The main thing to remember about a resolver is the resolver

sends queries. That would be a query being a question, a DNS

question. And name servers of the client side – and the main thing

to remember about resolvers is that they answer queries.

KOBE – How It Works: DNS Fundamentals EN

Page 6 of 38

 Now, there are some important optimizations that make DNS

work. One of these is caching. Caching improves performance.

Because this is a distributed database, doing a lookup in this

database can take a significant amount of time, even in human

terms. Not just in computer terms, but in real human eyeball

terms. And that’s because we’re talking about a database

distributed over the entire world and the speed of light is only so

fast, so you could imagine doing several lookups halfway around

the world and a few milliseconds here, a few milliseconds there,

pretty soon you’re adding up to half a second, a second, and

those are actual noticeable delays for real people.

 So, it’s important that DNS builds in caching, the ability to

remember information that you’ve looked up previously, so you

don’t have to look it up again. And that includes not only the final

answer for what you looked up but any intermediate answers

along the way that helped you get there. So, that all speeds up the

resolution process.

 DNS also uses replication to provide redundancy and load

distribution. What I mean by that is, in this distributed database,

data is not located just in one place. You have multiple copies,

multiple replicas, of the data. And this provides redundancy,

right? If all your name to address information were in one place

on one machine and somebody tripped over the power cord and

that machine goes off the air, then nobody can look up your name

KOBE – How It Works: DNS Fundamentals EN

Page 7 of 38

to address information. But because DNS uses replication, there’s

by design multiple copies of that information so you can tolerate

a failure like that.

 And then it also spreads the load. If you run a popular domain and

a lot of people are looking up your name to address information,

then you would have a lot of DNS queries to answer, and if you

have multiple replicas that can answer the queries, that helps

with the performance.

 So, here’s a high-level picture. I think a picture at this point really

helps put all these components together and explain how

everything works together.

 So, let’s start at the lower left. There we have a device that

happens to be a phone, but any device that uses the Internet that

needs to turn domain names into IP addresses. Any device is

going to be a DNS claim. And it has a very simple client in it called

a stub resolver.

 So, remember, resolvers are DNS clients and there’s actually two

kinds of resolvers, as I’m showing on this slide. And the very

simplest kind that’s everywhere is called a stub resolver. Literally

everything connected to the Internet that is going to need DNS

has one of these stub resolvers in it. They tend to be very, very

simple pieces of code and they tend to be supplied by the

KOBE – How It Works: DNS Fundamentals EN

Page 8 of 38

operating system on the device. They’re a service that the device

needs to provide, applications that run on the device.

 So, for example, on this slide, I’m showing that iPhone and I’m

showing the icon for the Safari web browser. So, let’s say that

somebody types in a domain name in that web browser. Well, the

web browser needs to turn that name into an IP address of a

website so it can go contact it. So, the application calls the stub

resolver and the orange there, the orangish color, that represents

an API call. That represents a programmatic call. This is the web

browser program talking to another piece of code on the

machine, a stub resolver.

 So, the stub resolver’s job is very simple. Its job is to take an

applications request for data, like an application like the web

browser is saying, “Hey, here’s a domain name. I need the IP

address.” The stub resolver takes that and turns it into a DNS

query and it sends it over the network, and it sends it to

something called a recursive resolver and that’s what we have in

the top center of the screen.

 So, recursive resolver is more complicated. And this is actually

part name server and part resolver, if you will. Remember, I said

name servers answer queries. So, a recursive resolver has a name

server component in that it answers queries from stub resolvers.

But it also has this more complicated resolver component and

KOBE – How It Works: DNS Fundamentals EN

Page 9 of 38

this resolver knows how to go out and contact various different

sources of DNS data on the Internet and look up a query, look up

an answer. So, those are what we call authoritative name servers.

 And authoritative name servers, their job is to hold DNS data and

wait for resolvers to ask them questions and then answer the

questions and that resolver, the recursive resolver in the center of

the screen, it knows how to chase down the answer to a query.

So, it might go to one authoritative server and say, “Hey, here’s

the piece of data I’m looking for,” and that authoritative server

might say, “Well, I don’t have the exact answer you’re looking for,

but I can refer you to another set of authoritative servers that can

help you out,” and then the recursive resolver would contact

them and it might get referred multiple times. And we’ll talk

about this in more detail how this works, but this is to try to show

you a high-level picture of how that works.

 So, eventually, that recursive resolver finds the answer it’s

looking for. See, I’ve got a cache shown there in the oval that

represents the idea that the recursive resolver is remembering all

this information that it’s looked up to speed up future look-ups.

Then, eventually, it returns that answer to the stub resolver and

the stub resolver returns the answer to the web browser and

we’re off and running, looking up the web page.

KOBE – How It Works: DNS Fundamentals EN

Page 10 of 38

 So, these are all the components that work together to make DNS

work from a technical perspective.

 Let me define a couple of important terms for you here. The first

of these is what we call the name space. So, I’ve said that DNS is

a distributed database and the structure of this distributed

database is an inverted tree. So, this is a computer science term.

An inverted tree is the opposite of a regular tree. A regular,

botanical tree you have the roots at the bottom and the branches

grow upward. But in a computer scientist tree, an inverted tree,

it’s the reverse. The root is at the top and the branches grow

downward.

 So, this is the structure of the DNS database, what we call the

namespace. If you contrast this to say if you know a little bit about

databases, you may know about, say, relational databases and

the structure of a relational database is you have multiple tables,

and in each table you have rows, and there are different kinds of

data in each row in what we call columns. So, that’s the structure

of a relational database.

 But the structure of the DNS database is this inverted tree that we

call the namespace. So, in this inverted tree, in the namespace,

we have these nodes represented with the rectangular boxes

here. Each node has a label which is just a string of characters that

identifies that node and the root node at the very top is special. It

KOBE – How It Works: DNS Fundamentals EN

Page 11 of 38

has actually a null label. It has a label, but the label is that it has

no label. That’s a little mind-bending but that’s how it works.

 Every other label, every other node in the name space has a label

and the legal characters for these labels are letters, digits, and the

hyphen and the maximum length of these is 63 characters and

case does not matter. Upper case and lower case are all

compared equivalently.

 I want to go back a slide because there’s one point that I wanted

to make and I didn’t. If you look at the right, you see I show the

different levels of nodes in the name space. We often talk about

these nodes in relation to where they are compared to the root.

So, the root is at the very top and immediately below the root are

what we call nodes at the top level, because remember, the top

of this tree is the root. And then below that we have the second

level and third level and so on.

 You also sometimes use parent/child terminology. You’ll talk

about one node being the parent of the other, like the root node

is the parent of dot-UK in this diagram and UK is the child of the

root.

 So, that’s the syntax for these labels. And this gets us to the point

where we can talk about domain names. Every one of these nodes

in the name space, it has a label name, but for example, we have

several nodes on the screen that are labeled www. So, a node’s

KOBE – How It Works: DNS Fundamentals EN

Page 12 of 38

label name by itself doesn’t tell you where the node is in the name

space. What you need is the full name for that node. And that’s

what we call the domain name and every node has a domain

name and it’s really straightforward to make that node’s domain

name. You just start at the node and you read off its label name

and you put down a dot and then you go to its parent and you

read that label name and you put down a dot and so on until you

get to the root and that’s how you construct the domain name for

any node.

 So, for example, the highlighted node there, as you can see,

reading upward is www.example.com. Now, if you imagine you’re

writing label names and dots, you eventually get to the top-level

label, in this case com, and you write a dot at the end and then

you get the root zone label, but there is no – the root is just that.

It’s a null label. There’s nothing to write for the root. So, you end

up with a domain name that ends in a dot and a domain name

ending in a dot is what we call a fully qualified domain name and

that unambiguously identifies a node in the name space. So,

there’s only one fully qualified domain name for every node and

every node has only one fully qualified domain name.

 So, then, let’s talk about domains. A domain is simply a node in

the name space and everything below it. So, here I’ve highlighted

the dot-com domain. Obviously, a tiny portion of the dot-com

KOBE – How It Works: DNS Fundamentals EN

Page 13 of 38

domain. But the idea here is that we have the node dot-com and

that node and everything below it is the dot-com domain.

 Now we get to a really important concept and that’s the concept

of a zone. The whole reason that we have the DNS in the first place

is that centralized administration, putting everything in one place

in that host file, that didn’t work. We realized we have to

distribute administration. Everybody has to be responsible for

their own portion of the name space so that they can administer

it on their own. In other words, administration is distributed. So,

this name space, the database that makes up DNS, has to be

divided up to allow distributed administration and different

people are responsible for different portions of it and those

divisions are called zones. And this process of delegation creates

zones and we have – you delegate from a parent to a child. This is

much easier to explain with a picture.

 So, here we have another picture of the same name space that

I’ve been showing this little excerpt of it. So, zones are

administrative boundaries. So, I’ve shown here what the

boundaries around some zones might be and there’s no way to

know what these boundaries are just by looking at the

namespace. You have to look at the information in DNS to tell you

where the zone boundaries are.

KOBE – How It Works: DNS Fundamentals EN

Page 14 of 38

 At the very top of the name space, we have the root zone and it

delegates, we call it, two zones below it which are at the top level

and those are called top-level zones. Then, below that, top-level

zones delegate to second level zones and so on. So, the arrows

I’ve got represent the delegation going from a parent to a child.

 So, if we go back to name servers, remember I said the job of a

name server is to answer queries and a name server that we call

authoritative [for a] zone has complete knowledge about the

zone. The idea is that every zone has a set of name servers that

know about information in that zone and every zone should have

multiple authoritative name servers and this is where you get

redundancy and you spread the load, as I mentioned earlier, how

DNS uses replication.

 So, if you’re going to have multiple authoritative servers for a

zone, if you’re going to have you zone’s information in multiple

places, you need a way to synchronize that. You need a way to

keep all of the copies in synch. Fortunately, DNS provides that.

There’s something called a zone transfer. I have some details on

the slide here that I won’t read out but the point here is that DNS

has built into it a replication protocol so that you can have your

zone maintained in one place and have all of the copies stay

synchronized.

KOBE – How It Works: DNS Fundamentals EN

Page 15 of 38

 So now let’s look inside a zone. I’ve talked about a zone at a high

level, the idea that the whole DNS name space is divided up into

these different regions that can be administered separately

called zones, but what’s in a zone?

 Well, every node has a domain name, remember, and we can

associate different kinds of data with that domain name and this

data is what we call – it’s stored in what we call research records

and there are different types of research records for different

kinds of data.

 A zone, then, is nothing more than the sum of all its resource

records and all the resource records in a zone are stored in what

we call the zone file and every zone has at least one of these zone

files.

 Each resource record has five fields that I’ll talk about here.

There’s actually a standard space way to write down this

information in text format and I will go ahead and just give some

examples here, again, rather than dwell on what’s on the slide.

 So, these are some common types of resources records. There are

actually – I can’t remember, do I have ….? Yes, I do have. Actually,

as of late 2017, there were 84 different types of resource records.

So, those were all the different types of data that you could put in

DNS. These are the most common resource record types.

KOBE – How It Works: DNS Fundamentals EN

Page 16 of 38

 So, by far, the most common is what we call an address record or

the Quad A record for four As and those are records that represent

IPv4 and IPv6 addresses. So, this is arguably the main purpose for

DNS, to map domain names to IP addresses. So, these two types

of records, the A record and the Quad A record, they’re the work

horse of DNS. They’re really main reason we have DNS.

 But DNS isn’t limited to mapping names to IP addresses. You can

map names to any other types of information and you can create

new record types if you can think of new thing that you want to

store in DNS.

 Now, there are other uses for DNS other than name to address

mapping. There’s nothing that’s been as fantastically popular

and successful as the main purpose of DNS, namely name to IP

address mapping. But the point is that you can use it for other

things.

 So, as I said, here are the most common types of resource records

and I’m going to go through and describe them one by one here.

 So, here is the … There is an IANA registry that describes the

different types of records. There’s the domain name for it here if

you wanted to go look at all the different types of resource

records that are officially on the books.

KOBE – How It Works: DNS Fundamentals EN

Page 17 of 38

 But let’s take these one at a time. So, the first of these would be

the two kinds of address records and this is how you map a name

to an IP address. So, here’s the actual text-based representation

for what they would look like in a zone file. You have a domain

name and then the type of the record and then the actual data for

that record. In this case, an IP address.

 So, that first one simply says that the domain name example.com

has the IPv4 address 192.0.2.7. So, that would be in a zone file

somewhere. An authoritative server would load that zone file and

know that that name maps to that address and a recursive

resolver could look it up.

 We also have the Quad A record which stores an IPv6 address and

that second record shows that the example.com domain name

maps to that particular IPv6 address.

 Now, there’s an analogy I like to use here. Most of the types in DNS

are used by people who want to store information in DNS and

look up that information but there are a few types that really are

only used by DNS itself. So, some types are the whole reason we

have DNS like A and Quad A, but then there are some types that

just are needed to make DNS itself work. Nobody outside of DNS,

nobody outside of clients, resolvers, and servers cares about

these types but they’ve got to be there for everything to work.

KOBE – How It Works: DNS Fundamentals EN

Page 18 of 38

 so, if you compare this to a warehouse, imagine that you have a

bunch of goods that you want to put in a warehouse, well, you

don’t just back your truck up and just throw everything into the

warehouse. First, you have to get the warehouse ready. You have

to set up, say, shelves. And once you get all the shelving in place,

then you can take the goods that you care about that you want to

store in the warehouse and you can put them on the shelves. And

if we consider DNS this way, types like the NS type and the SOA

type which I’m going to explain here in a moment, those are like

the shelves of DNS. We don’t really care about the shelves. They

have to be there or nothing else works. But the things we care

about would be like A records and Quad A records. That’s the

whole reason we have the warehouse, or in this case DNS, in the

first place.

 So, that being said, let me talk about one of these pieces of

shelving, the name server record. Every zone has to have a place

where we know where we say what the authoritative servers for

the zone are and that’s what this NS record – name server record

– is for. So, these two records here, for example, they say that for

the example.com zone, there are two authoritative name servers

and they’re named and it’s example.com and there’s two

different example.coms.

 So, on the left-hand side, then we have the name of a zone and on

the right-hand side, we have the name of a name server.

KOBE – How It Works: DNS Fundamentals EN

Page 19 of 38

 Now, right away, this unfortunately gets kind of complicated

because NS records actually appear in two places. The main

purpose of the NS record is to mark a delegation, is to actually

create a child zone. So, the NS records appear in the zone itself

and then they also appear in that zone’s parent zone and it’s the

NS records in the parent zone that actually delegate the child

zone.

 So, for example here, I’m showing the root zone and the dot-com

zone and that red arrow. The red arrow is conceptually the

delegation information. That’s the information in the root zone

that tells everyone that the dot-com zone exists.

 So, in that box, those are the 13 NS records. Those are the actual

13 NS records for the dot-com zone and that just says that the

dot-com zone has these 13 authoritative name servers.

 So, those 13 NS records for dot-com, they actually appear in two

places. They appear in the dot-com zone itself, but they also

appear in the parent zone of the dot-com zone which in this case

is the root – the parent is the one right above it in this name space

tree.

 This process works all the way down. I’m just showing that they’re

in both places, that the same set of records is in the parent, is in

the child.

KOBE – How It Works: DNS Fundamentals EN

Page 20 of 38

 If we go down a level, let’s for example look at the example.com

zone on the lower right. So, the example.com zone might have the

set of NS records that I show inside the box and that set of NS

records is not only in the example.com zone, but it’s also in that

zone’s parent, the dot-com zone and it’s the existence of those NS

records in the dot-com zone that tells everyone that the

example.com zone exists and where to go to find information

about it because the NS records, remember they tell us the names

of the authoritative servers that we can go contact if we have a

question we want to ask about example.com.

 So, if you think about it, then, a zone like dot-com is really just full

of NS records, because for every dot-com domain, there’s a set of

NS records that delegate that zone. So, the dot-com zone is

basically filled with 130 million or whatever the number is these

days, 130 million sets of NS records for each of the different

domains underneath dot-com, each of what we call the second-

level domains.

 Then, every zone has one and only one of what we call these SOA

or start of authority records. This type is rather complicated. If

you look, so far I showed you A records and Quad A records that

have just an IP address on the right side and NS records that have

just a name server on the right side. But here we have a record

that has seven different fields on the right side and most of these

fields have to do with zone transfers and the zone transfers, that

KOBE – How It Works: DNS Fundamentals EN

Page 21 of 38

way that we synchronize information on all the authoritative

servers.

 So, I’m not going to go into all the information. I’m not going to

go field by field into what all that means. I have it on the – oh, I

don’t have it on the next slide. I don’t have an example. I’ve got to

put that back. But again, most of these control relate to zone

transfers.

 One I will point out is that serial number. Every zone has a serial

number which is kind of like a version number and that’s how the

different authoritative servers can track whether or not they have

the most recent version of the zone or whether they’re out of date

because every time the zone changes, that serial number has to

increase and that’s how an authoritative server can tell, “Do I

have the most recent version or do I have an older version and I

need to get the most recent version?”

 Now, another thing that DNS is used for is mail routing. And I

mentioned this early on. One of the initial design goals for DNS,

one was to handle all the scaling problems in host.text that we

mentioned, but another one that I mentioned briefly was we need

to simplify – needed to simplify mail routing.

 So, here’s the issue. At the time, e-mail addresses consisted of a

username@ and a host name, because remember, back in the

80s, there were no domain names yet. So, your e-mail address

KOBE – How It Works: DNS Fundamentals EN

Page 22 of 38

was basically your user name @ and then the name of a physical

machine. So, what that said was your e-mail went to the machine

named in your e-mail address. So, that’s important to point out.

Your e-mail address literally consisted of your username@ and

the name of a physical machine. That meant that you had to go

to that machine. That’s where your e-mail went.

 Now, let’s say that that corresponded to a department in a

university. Let’s say that the Computer Science Department had

a particular machine that the Computer Science Department’s e-

mail went to. So, if you’re in the Computer Science Department,

your e-mail would go to that machine.

 Well, let’s say that you changed departments. Let’s say that you

changed to the Electrical Engineering Department and let’s say

that they have a different mail server and all the people in the

Electrical Engineering Department have e-mail accounts on that

server. Well, now, simply by changing departments, you’re going

to have to change your e-mail address, right? Because your e-mail

address, the physical machine where your mail goes is part of

your actual e-mail address. So, that was a real problem and

people said we’ve got to have a level of indirection in here. We

need to have a way for somebody’s e-mail address to say where

the e-mail goes, not exactly, not the physical machine, but have

another way to specify the physical machine.

KOBE – How It Works: DNS Fundamentals EN

Page 23 of 38

 So, that’s where mail routing and DNS comes in. So, what I’ve just

described is what’s on the slide. It described how, in the old days,

you had no choice but to send the mail to the physical machine.

 But, in DNS, we have what’s called an MX or a mail exchange

record and that lets us decouple the mail server from the actual

e-mail address.

 So, here’s an example of that. Let’s say we’re talking about the

mail for example.com. So, for any user at example.com, so if this

is somebody’s e-mail address, some user at example.com, in the

old days, there would have had to have been one machine named

example.com that all the mail would have gone to, but now with

MX records, we can have this level of indirection. What we can say

is these MX records say, well, for any mail to example.com, it

should really go to a server named mail.example.com and MX

records have this concept of a preference value. That’s the

number, the 10 and the 20, and counterintuitively lower is more

preferable. But you can not only say here’s where the mail goes

but you can have a backup. You can say if the main place for my

mail, for my domain, is not available, if that mail server is down

or whatever for whatever reason not working, the mail can go

somewhere else so that it can at least be delivered and be there

until the primary mail server is back up.

KOBE – How It Works: DNS Fundamentals EN

Page 24 of 38

 So, nowadays we just take MX records for granted, but this was a

big deal back when DNS was invented. This finally let you have an

e-mail address that was independent of the physical machine

where your mail went.

 Another thing that I want to talk about is called reverse mapping.

So, everybody, when they think of DNS and they think of host

names and they think of name resolution, they probably think of

mapping a domain name to an IP address. This is what we call

forward mapping.

 But there are times when you want to do the opposite, when you

have an IP address and you want to know what’s the domain

name that corresponds to this IP address.

 Now, by far – again, remember, the main thing that we worry

about most of the time is name to IP. I want to go to the name of

a website. I want to type in a URL that has a domain name in it for

a website. I want to turn that domain name into an IP address so

I can get to the website. I want to send somebody an e-mail, so I

need to turn the e-mail address into a mail server name and

ultimately into an IP address.

 But there are times when you want to do the opposite, when you

want to look at an IP address and know what’s the corresponding

domain name? An example of that would be what if you are …

Everybody’s maybe used the trace route program which lets you

KOBE – How It Works: DNS Fundamentals EN

Page 25 of 38

see the path that packets take across the network. The trace

route packet will show you the IP address of every router that a

packet hits as it moves across the network.

 Well, wouldn’t it be nice if instead of just seeing the IP address of

the router, we could turn those IP addresses into domain names

and then you could see the corresponding names of the routers

which would tell you the different organizations that they belong

to? That’s just an example of how it’s, in some cases, nice to be

able to map IP addresses back to domain names. And that’s what

we call reverse mapping.

 Now, if you think about how this would work if you had a host

table, as we did originally with the host.text file, if you have a file

that has every name and IP address in it, it’s easy to do forward

mapping and reverse mapping. They’re the same, right?

 If you have a name and you want to know the IP address, you can

just look through the file until you find a name and then there’s

the IP address. And if you have an IP address and you want to

know the name, you just look through the file until you find the IP

address and then you know the name. It’s easy. In both cases, it’s

just a search through the file.

 But, in DNS, it’s more complicated than that because the name

space … Let me go back a few slides to get a picture of the name

space. Here we go.

KOBE – How It Works: DNS Fundamentals EN

Page 26 of 38

 So, this inverted tree that we made, this is designed for looking

up names. You can imagine – and I’m going to describe this in just

a moment. If you want to look up a name here, if somebody tells

you, “I’m looking for information about www.example.com,” well

you can just start at the top of the tree at the root and you can

work your way down and you can eventually get to

www.example.com. You can get to that node and you could find

the information you’re looking for. That’s exactly how DNS name

resolution works and I’m going to explain it in a moment.

 So, you can imagine, given a name and this data structure, it’s

really easy to look up that name. But now imagine you have this

data structure and somebody says, “Well, I’ll give you an IP

address, 192.0.2.1. I want to know what the domain name is for

that.” Well, how do you even start, right? Here we have a data

structure that lets us look up names, but not IP addresses.

 So, DNS handles this in a rather interesting way. What it says is,

well, since you can only look up domain names in DNS, if I want

to look up an IP address, I have to make a domain name for it. So,

the way this works is that there is a domain name that

corresponds to every possible IPv4 address and to every possible

IPv6 address.

 So, if you have an IP address that you want to know its domain

name for, you look in this special portion of the name space

KOBE – How It Works: DNS Fundamentals EN

Page 27 of 38

where all the IP addresses are. And there’s a special kind of record

called the PTR or a pointer record. This is kind of conceptually the

opposite of an A record and of a Quad A record.

 So, remember, an A record maps a domain name to an IP address.

Quad A maps a domain name to an IPv6 address. And a PTR

record maps a domain name to another domain name, but in this

case the domain name is the special domain name.

 Here’s an example right here. This 7.2.0.192 to [inaudible], that

corresponds to the IP address 192.0.2.7. Let me show this picture.

That makes it maybe a little … It’s a complicated thing and

hopefully that makes it slightly less complicated.

 So, on the right, we have example.com, the portion of the name

space that I’ve been talking about for the past few minutes. But

then on the left, we have the [inaudible] or dot-arpa name space

and this is where all of the IPv4 address space has a domain

name.

 The way this all works is it’s just a convention that everybody

obeys. If you have IP addresses, let’s say if you own a particular

block of IP addresses and you want to make those IP addresses,

if you want them to be able to map back into domain names, you

are entitled to a zone that corresponds to that IP address space

and you fill it with PTR records, and if anyone wants to look up

the corresponding IP address, they construct the [inaudible] dot-

KOBE – How It Works: DNS Fundamentals EN

Page 28 of 38

arpa domain name, this one here on the slide, and they look it up

and then they find the domain name.

 I realize this is kind of a complicated thing that’s hard to explain

briefly without a whiteboard and a bunch of examples, but I

include this just to show that reverse mapping is a thing. It’s

something that people want to be able to do with DNS. They want

to not only map from names to IP addresses, but also from IP

addresses back to names.

 So, there are many more types of resource records than the one

that I’ve shown and I have just here a few examples for some of

the other pieces of data that you can map domain names to,

other than just IP addresses. This is, again, just an example to

show that DNS is used for other things.

 Here is an example zone file. This would be the zone file for the

actual example.com zone. These are all records that I’ve showed

so far as I went type by type, but if you put them all together, this

would be what a zone file would look like and this is a very typical

zone file. This is a small zone file, but it has enough information

in it – enough DNS information in it – to support, to tell us where

the web server for the zone is, the domain is, as well as how to get

e-mail to that zone, to that domain name. If you think about it,

that’s what most domain names on the Internet are used for, e-

KOBE – How It Works: DNS Fundamentals EN

Page 29 of 38

mail and web server. That’s the use case for most domain names

on the Internet. This then is a simple DNS zone that supports that.

 So, the authoritative server, the authoritative name server, for the

example.com zone would literally have this information, this file,

on it and it would read this file to know what the information is in

the example.com zone.

 So, let me wind up by describing the resolution process, to

describe how the different types of DNS clients, the stub resolvers

and recursive resolvers, how they cooperate with authoritative

name servers, the server side of DNS, to look up data anywhere in

DNS.

So, when you’re going to look up information in DNS, you always

need these three parameters – a domain name, a class, and a

type. We didn’t talk about class. I went over that. I skipped over

that. But class is always going to be IN for the Internet class. So,

what you really have then is a domain name and a type.

There are two different types of DNS queries. The very simple stub

resolvers that are on every single device connected to the

Internet. A stub resolver sends a really simple type of query called

a recursive query and what a recursive query says is I need you to

give me the exact answer to this question. I need you to either

answer the question completely or I need you to send me an error

back and tell me that you can’t do it.

KOBE – How It Works: DNS Fundamentals EN

Page 30 of 38

But recursive resolvers are more complicated and they send a

type of query called a non-recursive query and what that says is

you can either give me the final answer to my question if you have

it or you can give me partial information and I will work with the

partial information.

So, this resolution process starts at the root zone. So, there’s a set

of servers of that are authoritative for the root zone at the top of

the name space and they’re called root name servers. So, if you

start by contacting a root server, you can follow the information

that it gives you and ultimately find a name anywhere in the name

space. So, the root name servers are pretty important in that

regard.

So, it’s important to be able to contact a root name server. But

there’s no way to discover them. They have to be configured. So,

every recursive resolver on the Internet does have to have the

names an IP addresses of the root servers configured. And this is

usually done by whoever you got your recursive resolver software

from. For example, if this is on Linux, whoever packaged up your

Linux distribution, they would have included the current list of

root name server names and IP addresses. That’s what we called

a root [inaudible] file. This is the actual current list of root name

servers. There are actually 13 names for root name servers and

there are 13 IPv4 addresses and there are 13 IPv6 addresses.

KOBE – How It Works: DNS Fundamentals EN

Page 31 of 38

However, it’s not quite as simple as that. As I’m going to show,

there are many more than 13 physical root servers.

Administration of the root zone is kind of complicated. There are

two organizations that cooperate to administer what’s in the

root. One is ICANN through its role as what we call the IANA

functions operator and the other is Verisign that operates as

what’s called the root zone maintainer. So, that’s the content of

the root zone itself. That’s maintaining what’s in the root zone.

But then there are 12 different organization that operate the

authoritative name servers for the root zone. So, this is a little

unusual. Usually, when you think of a company – let’s say ICANN.

So, ICANN’s zone is the ICANN.org zone and ICANN is responsible

for all of the authoritative servers for ICANN.org. But here we have

the zone, the root zone, and there’s not one organization

responsible for the authoritative servers. There are 12 different

organizations. And here’s that list of 12 organizations.

So, there are 13 letters that correspond to the 13 root server

identities. There are 12 organizations because Verisign runs two.

For complicated historical reasons, they run A and J. So, this

group of organizations runs root servers and there’s some

complicated Internet history here, but the really, really brief

version is that back when DNS was invented, it was important

that these root servers be on networks run by people who had

good networks with a lot of bandwidth and who understood how

KOBE – How It Works: DNS Fundamentals EN

Page 32 of 38

to operate a root server. So, these organizations were basically

picked in the early days of DNS and they’ve stayed that way

almost the same ever since. So, that’s the 13 organizations that

run – or the 12 organizations that run the 13 root server identities.

However, there are many, many more than 13 physical machines

because of a technique called Anycast. This is a routing technique

that allows a single IP address to appear in multiple places

physically on the Internet. So, there are literally over 1,000 root

server instances we call them. So, there are more root servers

than there are any other kind of name server for any zone

anywhere on the Internet.

So, the important thing is not to think of the 13 root server

identities. The important thing is to remember that each one of

these identities is located in, in some cases, hundreds of places

so that we have literally over 1,000 different root server instances

all over the Internet.

At a real high level, this is how the root zone gets updated. When

the manager of a top-level domain has a change they want to

make, they contact the IANA functions operator which is run by

ICANN’s subsidiary PTI and then that change, after getting

verified, goes to root zone maintainer which is Verisign and they

ultimately produce a root zone file which then the 13 different

KOBE – How It Works: DNS Fundamentals EN

Page 33 of 38

organizations pick up and distribute to all the thousand instances

that I mentioned.

So, this is obviously a very simplified – very, very simplified –

version of the actual process.

But let’s actually go now finally to the resolution process and talk

how it actually works. So, let’s step through. Let’s go back to my

phone here in the lower left and my web browser and let’s say

that I type into my phone that I want to go to www.example.com.

So, how exactly does my phone turn that name.

www.example.com, into an IP address that it can then use to

contact the web server for www.example.com?

Well, the first thing the web browser does is it calls the stub

resolver and it passes through. It says, “Alright. I have this domain

name. I need you to find me the IP address.” So, the stub resolver

– remember, very simple. One thing that it does know about is the

recursive resolver that it should send queries to. And usually the

stub resolver discovers this by the same way that the device gets

its IP address.

So, a device comes up on a network for the first time and it uses

the DHCP protocol. It says, “Help. I’m new on the network. I need

an IP address.” And the network gives it an IP address, and not

only an IP address but it gives it other important configuration

information so that the device can work on that network and one

KOBE – How It Works: DNS Fundamentals EN

Page 34 of 38

of those pieces of configuration information is the IP address of

the recursive resolver the device should use.

So, in this case, this device is on a network that says, “Alright. You

should use the recursive resolver at 4.2.2.2.” So, the stub resolver,

it just got asked, “Well, what’s the address for

www.example.com?” So, it constructs a DNS query. It constructs

an actual packet and it sends it off to that recursive resolver.

Now, the recursive resolver is going to do all the work here, as

we’ll see. To make this example more interesting, we’re going to

assume that this recursive resolver has just been turned on, so it

has nothing in its cache. The only thing that it knows is how to get

to the root name servers because that’s what you have to know

to do DNS resolution. You have to know how to get to the root

servers. Everything else you can discover along the way.

So, this recursive resolver gets that query, and because it doesn’t

have anything else in its cache, it says, “Well, I’ve got to ask a root

server.” So, there are 13 root server identities it could pick from

and it picks one. Actually, how it chooses depends on who wrote

the recursive resolver. Let’s say in this case it chooses randomly

and it chooses one called L.root-servers-net. So, this recursive

resolver then asks that root server. It says, “Do you know the IP

address of www.example.com? So, note that it asks exactly what

it’s looking for. It doesn’t ask a more general question. It doesn’t

KOBE – How It Works: DNS Fundamentals EN

Page 35 of 38

say, “Hey, do you know about dot-com?” It literally says, “Hey, I’m

looking for www.example.com.”

So, in this case, the root server, while it doesn’t know the address

for www.example.com and it doesn’t know anything about

example.com, but it does have the delegation information for

.com, because in the root zone are the NS records for dot-com

that tells everyone where the authoritative servers for dot-com

are.

So, what the root server can say is here are the authoritative

name servers for dot-com. You should go ask one of them. So, the

recursive resolver puts that information in its cache to remember

it for future reference and then it does what we call follows that

referral. It picks one of the authoritative name servers for dot-

com – and again, let’s say it’s choosing randomly and it picks one,

it picks the c.gtld-servers.net, that’s the name of a dot-com

server, and it asks it the same question. It says, “Do you know the

IP address for www.example.com?”

Well, in this case, we wouldn’t expect a dot-com authoritative

server to know that, but it does know the name servers for the

example.com zone. So, it can send what’s called a referral. It can

say, “Well, here are the authoritative severs for example.com.

Why don’t you go ask one of them?” So now the recursive resolver

caches a list of example.com servers and it follows that referral

KOBE – How It Works: DNS Fundamentals EN

Page 36 of 38

and it goes to an authoritative server for example.com and it asks

the same question a third time and it says, “Do you know the IP

address for www.example.com?” And in this case, the

authoritative server says, “Yes, I do know that. And here’s what it

is.” And now the recursive resolver caches that and it can finally

return the answer to the stub resolver which can return it to the

application that’s been waiting all this time and now the

application knows the IP address of www.example.com shown

there and it can contact that web server and download the page

and away we go.

So, that is, at a very high level, a simple example of how resolution

works. Just like most things in life, it can be more complicated

than this. This is the simple example. But it shows the important

concept which is that you start at the root and you work your way

down.

Now, as I said, there’s caching that speeds everything up. So, after

that query that we just did, that recursive resolver now knows the

names and IP addresses of all the dot-com servers, the names and

IP addresses of all the example.com servers and it knows the IP

addresses for www.example.com.

So now let’s imagine that there’s another query that immediately

follows that. Let’s say that somebody looks up ftp.example.com.

So, that web browser sends that request to the stub resolver. The

KOBE – How It Works: DNS Fundamentals EN

Page 37 of 38

stub resolver creates a DNS query packet and sends it off to the

recursive resolver. But this time the recursive resolver can say,

well, ftp.example.com, it doesn’t have to start at the root. It

doesn’t have to go to a dot-com server because it says, well, I

know the authoritative servers for example.com. I can go

immediately to an authoritative server for example.com and ask

it for the IP address of ftp.example.com, it can get the response

and it can return it.

So, that’s an example that shows how much caching helps. That

recursive resolver didn’t have to go back to a root server. It didn’t

have to go back to a dot-com server. It could immediately go to

an example.com server. And then that address gets returned to

the web browser.

So, that is a very, very quick tour. I threw a lot of material that’s

very complicated and I know I talked fast and I know it’s first thing

on a Saturday morning but the slides are available on the

schedule. You can look at them. That’s my e-mail address. I’d be

happy to answer any questions via e-mail and we have a lot of

time left in the session right now and we have microphones, so I

would be happy to answer any questions if you have them now.

So, please, just come on up to the mic.

In that case, I guess we’ll close the mic line that doesn’t exist.

Thank you for coming. I’m going to stick around for a few minutes.

KOBE – How It Works: DNS Fundamentals EN

Page 38 of 38

I’d be happy to answer any questions that you have if you want to

come up and talk to me. Again, thanks for coming to this session

and I hope everyone has a good week. Thank you.

CATHY PETERSEN: Thank you, everyone. That was our first How It Works tutorial for

today. Our next one will be the How It Works on Understanding

DNS Abuse and that will be here in—

[END OF TRANSCRIPTION]

