DNS over Secure Transports

Emerging Identifiers Technology

Paul Hoffman

ICANN 64, Kōbe 12 March 2019

Emerging transports, not emerging identifiers

- This session describes two methods of getting DNS information that have been standardized in recent years are are starting to see more deployment
- This is still the DNS: the data is the same
- What's new is that the data is secured with TLS
- This causes some important policy implications

DNS-over-TLS and DNS-over-HTTPS: an overview

- Normal DNS queries and responses are sent in the clear on port 53
 - Susceptible to monitoring
 - Susceptible to falsification
- Usually over UDP, sometimes over TCP
- DNS traffic is sent primarily between end-user systems and recursive resolvers

DNS-over-TLS (DoT)

- IETF started work in April 2015 to protect DNS traffic between stub resolvers and recursive resolvers with TLS
- Standardized in May 2016
- DNS protocol is unchanged: it just runs under TLS on port
 853
- Note that TLS is always TCP
- Easy to implement in both operating systems and in recursive resolvers, but implementation in OSs is scarce
- Was recently added to Android in promiscuous mode

DNS-over-HTTPS (DoH)

- IETF started work in December 2017 to protect DNS traffic between browsers and recursive resolvers with TLS
- Standardized in October 2018
- DNS protocol is turned into HTTP messages that are transferred under HTTPS
- Note that TLS is always TCP
- Easy to implement in both browsers and in recursive resolvers, and lots of implementations appeared before the spec was even complete

Comparison of DoT and DoH

- DoT was designed for operating systems (stub resolvers), DoH was designed for browsers and web applications (Javascript)
- DoT runs on its own port (853), DoH runs under HTTPS on normal port 443
- Neither DoT nor DoH specify how the user should be able to set up the protocol, or whether they can even tell that the protocol is running
- DoT seemed uncontroversial because people assumed computers would be configured to use the same recursive resolver that was already trusted by the user
- DoH quickly became controversial because Firefox performed tests using a cloud provider that was not necessarily trusted by the user

This is not DNSSEC

- DNSSEC is authentication-only: it does not add encryption
- DNSSEC assures that the answer is what the zone owner intended, but only if it is used
- Most large commercial domains do not sign their DNS records with DNSSEC
- Most recursive resolvers do not validate DNSSEC responses
- Current data suggests that only about 15% of Internet users use a resolver that validates DNSSEC responses

Policy implications: service blocking

- Privacy is good
- However, the reduced visibility can block the service providers you trust
- Some providers, particularly enterprises, rely on cleartext DNS on port 53 in order to provide services such as malware and exfiltration detection

Policy implications: centralization

- DoT is generally only configured for resolvers that the user would have likely used anyway, but DoH is controlled by browsers and web applications
- The DNS queries can go anywhere that the browser or application wants
- Typically, this will be to large, well-known resolvers
- Those resolvers will then have much more information about users than they might have before, and will be targets for people who want that information

Policy implications: split views

- It is common in enterprises to have domain names that resolve differently if you are "inside" the enterprise network than if you are "outside"
- DoH (and DoT to unknown resolvers) breaks that model, so names will be resolved externally much more often
- In addition to accessibility problems, this can cause security problems because users may end up on sites they don't expect

Engage with ICANN

Thank You and Questions

Visit us at icann.org
Email: paul.hoffman@icann.org

@icann

facebook.com/icannorg

youtube.com/icannnews

flickr.com/icann

linkedin/company/icann

slideshare/icannpresentations

soundcloud/icann

